∝-BROMKETIMINE 1)

Helmut Quast und Alfred Heublein Institut für Organische Chemie der Universität Würzburg D-87 Würzburg, Am Hubland

(Received in Germany 27 July 1975; received in UK for publication 14 August 1975)

In der 1.3-Eliminierung geeignet substituierter α -Brom- α' -H-ketimine $(\frac{2}{2})$ fanden wir kürz-lich eine einfache und ergiebige Darstellung von Cyclopropaniminen 2). Die Vorstufen $\frac{2}{2}$ wurden bisher aus den leicht zugänglichen α -Bromimidchloriden $\frac{1}{2}$ und Alkylmagnesiumbromiden in Ausbeuten von 50 - 90 % erhalten 2). Diese Reaktion mißlingt jedoch mit stärker verzweigten Grignard- oder Lithiumverbindungen (z. B. R 4 = tBu). Ferner lassen sich cyclische und N-tert-butylsubstituierte 3) α -Bromketimine so nicht gewinnen. Als naheliegende Alternative untersuchten wir daher die bisher relativ wenig beachtete und meist unter anderen Gesichtspunkten durchgeführte α -Halogenierung von Ketiminen 4).

 R^1 = H, Me; R^2 = tBu, Me; R^3 = Me, prim., sek. Alkyl, Aryl; R^4 = H, Me

Die verwendeten Ketimine 3, 4 und 5) wurden aus den Ketonen und Aminen) in guten Ausberten erhalten, nachdem die Reaktionsbedingungen dem Ausmaß der sterischen Behinderung beider Komponenten angepaßt waren.

Bei der Bromierung des Ketimins $\frac{3}{2}$ mit 2 mol NBS in CCl₄ bei 50° C unter Belichtung und Zusatz katalytischer Mengen Trifluoressigsäure ließen sich 34 % des kristallinen Bromimins $\frac{6}{2}$ isolieren.

Die Bromierung des Ketimins 4ª mit NBS in CCl₄ oder 2.4.4.6-Tetrabromcyclohexadienon ⁷⁾ (TBCH) in Äther führte zu Gemischen (Tab. 1). Eine destillative Trennung mißlang, doch trat beim Erwärmen (4 h, 40-60°C) neben partieller Zersetzung teilweise Isomerisierung zu dem stabileren 8ª ein, das rein isoliert werden konnte.

$$\underbrace{\frac{1}{2}}_{N} \xrightarrow{\text{tBu}} \xrightarrow{\text{tBu}$$

Tab. 1: Bromierungsprodukte der Ketimine 4

Imin	mol Reagenz	Temp.(°C)	Ausb. (%) a)	7	8	<u>9</u> b)
4 <u>a</u>	0.73 NBS/CCl ₄	20-25	67	70	11	19
	1.2 NBS/CCl ₄	20-25	69	62	18	20
	1.0 TBCH/Et ₂ O	- 35 45	68-73	70-80	20-30	
4 ₽	1.0 TBCH/Et ₂ O	- 30 40	70-81	>95		

a) nach Destillation bei 0.01 - 0.001 Torr

Im Gegensatz zu $\frac{4}{2}$ wird $\frac{4}{2}$ durch TBCH regioselektiv zu $\frac{7}{2}$ bromiert (Tab. 1). Bemerkenswert ist die präparativ interessante, ohne Solvens ablaufende thermische Isomerisierung $\frac{7}{2}$ \longrightarrow $\frac{8}{2}$ (5 h, 80-100°C, 64 % Ausbeute bez. auf $\frac{4}{2}$). Dabei spielt offenbar das α , α' -Dibromketimin die Rolle des Brom-Überträgers α' . Die säurekatalysierte Isomerisierung von α -Bromketonen ist seit längerem bekannt α'

b) ¹H-NMR-spektroskopisch bestimmte Anteile (%).

Besonders ausgeprägt ist der Einfluß des Reagenz bei der Bromierung von $\underline{5}$, das in einem auffallend hohen Anteil in der Enaminform existiert $^{5)}$. TBCH liefert bei -40° C glatt das kristalnne Monobromierungsprodukt $\underline{10}$, das als Tautomerengemisch vorliegt. Dagegen konnte $\underline{10}$ bei der momentan bei -20° C ablaufenden Umsetzung mit Brom in CCl₄ in keinem Fall erhalten werden. Stets entstand die Dibromverbindung $\underline{11}$ neben $\underline{51}$ HBr, dessen Bildung auch durch zugesetzte Hilfsbasen ($\underline{K2}$ CO₃, CaO, Pyridin oder 2.2.6.6-Tetramethylpiperidin) nicht unterdrückt werden konnte (Tab. 2).

$$tBu$$
 tBu
 tBu

Tab. 2: Produkte der Bromierung von 5 in CCl

mol	Reagenz	mol	Base		Ausbeute a)	
1.00	твсн	-	_	91 % 10		
1.07	Br_2	6.9	κ_2^{CO}	<u>1</u> 1 c);	47 % 5 HBr	
1.16	Br_2	2.0	Pyridin	49 % 11;	44 % 5 HBr + Py	HBr
1.11	Br ₂	35.0	Pyridin ^{b)}	<u>1</u> 1 c);	36 % <u>5 HBr</u> + Py	HBr]
3.57	Br_2	3.57	Pyridin	<u>1</u> 1 ^{c)} ;	40 % 12	

- a) Nach Destillation im Hochvakuum oder Kristallisation
- b) ohne Solvens
- c) neben der isolierten Verbindung einziges ¹H-NMR-spektroskopisch nachweisbares Produkt.

Die weitere Bromierung von $\frac{1}{2}$ tritt nicht an der Doppelbindung sondern - wahrscheinlich aus sterischen Gründen - am Stickstoff ein. Das $\frac{1}{2}$ entsprechende Tosylhydrazon wird durch Phenyltrimethylammoniumperbromid bei Raumtemperatur ebenfalls in α, α' -Stellung dibromiert α' . Diese Dibromierungen verlaufen vielleicht nach einem ähnlichen Mechanismus, wie er für die α' α' -Dichlorierung von Cyclohexanonen kürzlich nachgewiesen wurde α' - Über die Darstellung von Cyclopropaniminen aus den neuen α' -Bromiminen werden wir an anderer Stelle berichten.

Literatur und Fußnoten

- 1) Cyclopropanimine, 3. Mitteilung. 1. und 2. Mitteilung: Lit. ^{2a)}. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt. A.H. dankt dem Fonds der Chemischen Industrie für ein Promotionsstipendium
- 2) 2a) H. Quast, E. Schmitt und R. Frank, Angew. Chem. 83, 728 (1971); H. Quast,
 R. Frank und E. Schmitt, ibid. 84, 316 (1972); 2b) R. Frank, Dissertation, Universität
 Würzburg 1974.
- 3) Vgl. I. Ugı, F. Beck und <u>U. Fetzer</u>, Chem. Ber. <u>95</u>, 126 (1962).
- 4) J.F.W. Kaena und R.R. Schumaker, Tetrahedron 26, 5191 (1970); H. Ahlbrecht und H. Hanisch, Synthesis 1973, 108, N. De Kimpe und N. Schamp, Tetrahedron Lett. 1974, 3779.
- 5) H. Quast und A. Heublein, Chem. Ber. 108, (1975) im Druck.
- 6) C.-D. Mengler, Liebigs Ann. Chem. 1974, 1543; D.P. Roelofsen und H. van Bekkum, Rec. Trav. Chim. Pays-Bas 91, 605 (1972).
- 7) M. Fieser und L.F. Fieser, Reagents for Organic Synthesis, Bd. 4, S. 476, J. Wiley & Sons, New York, London, Sydney 1974.
- 8) Vgl. dazu den "Halogen-Tanz". J. F. Bunnett, Accounts Chem. Res. 5, 139 (1972).
- 9) H.O. House, Modern Synthetic Reactions, 2. Auflage, S. 459, W.A. Benjamin, Menlo Park, California 1972.
- 10) G. Rosini und G. Baccolini, J. Org. Chem. 39, 826 (1974).
- 11) K. E. Teo und E. W. Warnhoff, J. Amer. Chem. Soc. 95, 2728 (1973).